Laplacian Maximum Margin Criterion for Image Recognition
نویسندگان
چکیده
منابع مشابه
Laplacian Maximum Margin Criterion for Image Recognition
Previous works have demonstrated that Laplacian embedding can well preserve the local intrinsic structure. However, it ignores the diversity and may impair the local topology of data. In this paper, we build an objective function to learn the local intrinsic structure that characterizes both the local similarity and diversity of data, and then combine it with global structure to build a scatter...
متن کاملFeature extraction based on Laplacian bidirectional maximum margin criterion
Article history: Received 28 July 2008 Received in revised form 2 March 2009 Accepted 9 March 2009
متن کاملBlock-Wise Two-Dimensional Maximum Margin Criterion for Face Recognition
Maximum margin criterion (MMC) is a well-known method for feature extraction and dimensionality reduction. However, MMC is based on vector data and fails to exploit local characteristics of image data. In this paper, we propose a two-dimensional generalized framework based on a block-wise approach for MMC, to deal with matrix representation data, that is, images. The proposed method, namely, bl...
متن کاملA Recursive Information Gene Selection Using Improved Laplacian Maximum Margin Criterion ⋆
Gene selection is an important research topic in pattern recognition and tumor classification. Numerous methods have been proposed, Maximum Margin Criterion (MMC) is one of the famous methods have been proposed to solve the small size samples problem. But, the MMC only considers the global structure of samples. In this article, a novel recursive gene selection criterion named Laplacian Maximum ...
متن کاملBackground Modeling via Incremental Maximum Margin Criterion
Subspace learning methods are widely used in background modeling to tackle illumination changes. Their main advantage is that it doesn’t need to label data during the training and running phase. Recently, White et al. [1] have shown that a supervised approach can improved significantly the robustness in background modeling. Following this idea, we propose to model the background via a supervise...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer and Communications
سال: 2015
ISSN: 2327-5219,2327-5227
DOI: 10.4236/jcc.2015.311010